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Abstract This paper presents an algorithm for finding a global minimum of a mul-
timodal, multivariate and nondifferentiable function. The algorithm is a modification
to the new version of the Price’s algorithm given in Brachetti et al. [J. Global Op-
tim. 10, 165–184 (1997)]. Its distinguishing features include: (1) The number-theoretic
method is applied to generate the initial population so that the points in the ini-
tial population are uniformly scattered, and therefore the algorithm could explore
uniformly the region of interest at the initial iteration; (2) The simplified quadratic
approximation with the three best points is employed to improve the local search
ability and the accuracy of the minimum function value, and to reduce greatly the
computational overhead of the algorithm. Two sets of experiments are carried out to
illustrate the efficiency of the number-theoretic method and the simplified quadratic
model separately. The proposed algorithm has also been compared with the original
one by solving a wide set of benchmark problems. Numerical results show that the
proposed algorithm requires a smaller number of function evaluations and, in many
cases, yields a smaller or more accurate minimum function value. The algorithm can
also be used to deal with the medium size optimization problems.
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1 Introduction

Many practical engineering applications can be formulated as a global optimization
problem, in which the objective function is not convex and possesses many local min-
ima in the region of interest. In this paper, we consider the problem of finding a global
minimum of the unconstrained optimization problem (P):

minimize f (x),
subject to x ∈ D,

where f : Rn → R and D is a compact set which contains in its interior a global
minimum point x∗ of f (x). Usually, the search domain D is a hypercube. We will
concern ourselves with a particularly difficult global optimization problem in which
the evaluation of the objective function is very expensive, and the derivatives of the
objective function are not available. This class of global optimization problems is very
important in engineering applications.

In recent years, many algorithms have been proposed to solve the unconstrained
global optimization problem (P) (see, e.g. [1]). Törn et al. [2] discussed the features of a
global optimization problem and their contributions to the problem complexity. They
also recognized different techniques that are applied in global optimization. Ali et al.
[3] proposed a new controlled random search algorithm in which the simplex search
originally proposed by Price [7] is replaced by the quadratic search and β-distribution
sampling. In their algorithm, a three-point quadratic approximation is used to conduct
global searches. Ali and Storey [4] proposed an aspiration based simulation algorithm.
The advantage of their method is that it can memorize the best solution during a run.
Storm and Price [5] proposed a new heuristic approach, called differential evolution,
for global optimization over continuous spaces. Brachetti et al. [6] presented a new
version of the well known Price’s algorithm [7], which tries to make a better use of the
values of the objective function already evaluated than in the basic Price’s algorithm
[7]. Three simple heuristic tools [6], the weighted centroid, the weighted reflection and
the quadratic model of the objective function, are employed to improve the efficiency
of Price’s algorithm. Experimental results show that the algorithm performs better
than the basic Price’s algorithm and that the application of a weighted centroid and
of a weighted reflection is effective in reducing the number of function evaluations.
The use of a quadratic model of the objective function mainly improves the accuracy
of the estimated minimum function value. However, to build quadratic approxima-
tions of the objective function, simultaneous linear equations with 2n + 1 unknowns
must be solved many times, and in many cases the objective function has no improve-
ment. For relatively large n, this will increase the computational burden and hence is
time-consuming.

In this paper, we are interested in the new version of the Price’s algorithm proposed
in [6] since it has been developed to tackle a class of particularly difficult global opti-
mization problems. The number-theoretic method and the quadratic approximation
with the three best points will be adopted in the new version of the Price’s algorithm
to improve its search ability and efficiency and to make it adapt to the solution of
medium size problems.
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Number-theoretic (NT) method or quasi-Monte Carlo method is a special method
which represents a combination of number theory and numerical analysis. Like many
mixed breeds, it has fascinations and attractions. The NT methods have been success-
fully applied in multidimensional numerical integration (quadrature), interpolation
and numerical solutions of integral equations as well as differential equations [8, 10],
and in various fields of statistics [9]. These applications illustrate that the NT method
is a power tool. The essence of the NT method is to find a set of points that are uni-
formly scattered over an n-dimensional unit cube. Note that a “uniformly scattered”
set of points as stated here means roughly that the set has a small discrepancy (defined
in Sect. 2), not a set of points which are uniformly distributed in the usual statistical
sense. Sometimes the NT set can be used instead of random numbers in the Monte
Carlo method.

The population-based algorithm for the continuous optimization problem requires
that the points in the initial population set should cover the entire region of interest. If
the number of points in the initial population set is relatively small, the set produced
by the Monte Carlo method is not distributed very uniformly, which will affect the
efficiency of the algorithm. Instead of Monte Carlo method, the NT method will be
used in the algorithm to generate its initial population.

In order to solve the problem (P) efficiently, we modify the new version of the
Price’s algorithm proposed in [6], which is a population-based algorithm with global
and local search parts. The global search part consists of the weighted centroid and
the weighted reflection. Our modification is twofold: (1) The NT method is applied to
generate the initial population. We first produce by the NT method the uniformly scat-
tered points in an n-dimensional unit cube, and then transform them into the points in
the hypercube D, which are chosen as the initial population. (2) A simplified quadratic
approximation using the three best points is adopted, instead of the quadratic model
of the objective function in [6]. When a point found by the global search part has the
function value less than or equal to the third best within the current population, the
quadratic approximation using the three best points is used. Two set of experiments are
carried out to illustrate the efficiency of the NT method and the simplified quadratic
model separately. The proposed algorithm has also been experimented on a large set of
benchmark problems, taken from [6]. For all the benchmark problems, a comparison
has been made with the original algorithm. Simulation results indicate that the pro-
posed algorithm requires a smaller number of function evaluations and, in many cases,
yields a smaller value of the objective function. The algorithm can also be used to solve
medium size optimization problems. Therefore the proposed algorithm is efficient.

In Sect. 2, we describe the NT method for generating the initial population. The
proposed algorithm is then presented in Sect. 3, and the numerical experiment results
and the comparison with the original algorithm are given in Sect. 4. We finally conclude
our paper in Sect. 5.

2 Number-theoretic method for generating the initial population

This section introduces the so-called NT method that can be applied to generate the
initial population for population-based algorithms. The essence of the NT method is
to find a set of points which are uniformly scattered in an n-dimensional unit cube
Cn = [0, 1]n. What is the meaning of “uniformly scattered” in Cn? First, we describe
the concept of discrepancy to measure the uniformity of a set of points in Cn.
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Definition [9] Let S = {xk, k = 1, 2, . . . , m} be a set of points in Cn. For any � =
(γ1, γ2, . . . , γn)

� ∈ Cn, let N(�, S) be the number of points in S satisfying xk ≤ �.
Then

D(m, S) = sup
�∈Cn

∣
∣
∣
N(�, S)

m
− v([0, γ1] × · · · × [0, γn])

∣
∣
∣ (1)

is called the discrepancy of S, where v([0, γ1] × · · · × [0, γn]) = γ1 · · · γn denotes the
volume of the rectangle [0, γ1] × · · · × [0, γn].

If the set S with m points in Cn has the lowest discrepancy D(m, S) among all the
sets of m points in Cn, then the points in the set S are uniformly scattered in Cn. That
is why the discrepancy is used to measure the uniformity for a set of points.

Now the question is how to determine the set of points with the lowest discrepancy.
The problem is solved for the case of n = 1 [9]. Let m be an integer such that m ≥ 1,
and let

Q =
{

2i − 1
2m

, i = 1, 2, . . . , m
}

. (2)

Then the set Q has the lowest discrepancy 1/(2m) among all the sets of m points in
C1 = [0, 1], as shown in [9].

It is very difficult to find a set with the smallest discrepancy for the case n ≥ 2,
because the distributions of m points in Cn may be very complicated. In what follows,
we will introduce several useful methods for generating a set of points in Cn with low
discrepancies. This set is also called an NT-net on Cn. For the details of the related
theoretical results, refer to [8–10].

(1). A glp set The set produced by a so-called good lattice point modulo m is called
a glp set, which is often used in practice and is convenient for computation.
Let (m; h1, . . . , hn) be a vector with integral components satisfying 1 ≤ hi < m,
hi �= hj (i �= j), n < m and the greatest common divisors (m, hi) = 1, i = 1, . . . , n.
Let

qki ≡ khi(mod m),
xki = (2qki − 1)/(2m),

k = 1, . . . , m, i = 1, . . . , n. (3)

The set Sm = {xk = (xk1, . . . , xkn)
�, k = 1, . . . , m} is called a lattice point set of

the generating vector (m; h1, . . . , hn). If the set Sm has the smallest discrepancy
among all possible generating vectors, then the set Sm is called a glp set. It can
be seen that xki defined in (3) can be easily calculated by

xki =
{

2khi − 1
2m

}

, (4)

where {x} stands for the fractional part of x. Some glp sets have already been
derived in the references (see, e.g. [8]). When 2 ≤ n ≤ 18, a few generating
vectors (m; h1, . . . , hn) with h1 = 1 for some m’s can be found in Appendix A of
[9].

(2). A gp set For any given � = (µ1, . . . ,µn)
� ∈ Rn, let L be a set formed by the

first m elements of the set

{({µ1k}, . . . , {µnk})�, k = 1, 2, . . .}. (5)

If L has a low discrepancy, then the set (5) is called a gp set and � a good point.
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The gp set can be easily obtained if we have a good point. The following three
good points are recommended in practice:

1. The square root sequence: We take

� = (√
p1, . . . ,

√
pn

)�, (6)

where pj’s are different prime numbers, e.g. the first n prime numbers.
2. Let p be a prime number and q = p1/(n+1). Take

� = (

q, q2, . . . , qn)�. (7)

3. The cyclotomic field method: We take

� =
( {

2 cos
2π
p

}

,
{

2 cos
4π
p

}

, . . . ,
{

2 cos
2πn

p

} )�
, (8)

where p is a prime number such that p ≥ 2n + 3.
(3). An H-set H-set is based on the p-adic representation of natural numbers. Let l

be a natural number such that l ≥ 2. Then any natural number k has a unique
l-digits representation

k = b0 + b1l + b2l2 + · · · + brlr, 0 ≤ bi ≤ l − 1, i = 0, 1, . . . , r, (9)

where lr ≤ k < lr+1. For any c ∈ (0, 1), c has a unique l-digits representation

c = c0l−1 + c1l−2 + · · · , 0 ≤ ci ≤ l − 1, i = 0, 1, 2, . . .

We write k = brbr−1 · · · b1b0 and c = 0.c0c1 · · · A one-to-one correspondence
between positive integers and rational numbers in (0, 1) can be established as
follows: For any integer k ≥ 1 with the representation (9), let

yl(k) = b0l−1 + b1l−2 + · · · + brl−r−1. (10)

Then yl(k) ∈ (0, 1). Let pi (1 ≤ i ≤ n) be n distinct prime numbers. Then

xk =
(

yp1(k), . . . , ypn(k)
)�

, k = 1, 2, . . . (11)

is called an H-set.

The aforementioned three main kinds of sets have wide applications in practice
[8–10]. The glp set is a finite set while the gp set and the H-set have infinite number
of elements. Each set has its advantages and also shortcomings [9]. For the glp set, a
different generating vector (h2, . . . , hn) will be chosen for each value of m, only a few
generating vectors for some values of m are provided in Appendix A of [9], and there
are no generating vectors for n > 18. The gp set is convenient to use. Suppose one
first generates an NT-net of m1 points and then finds that in fact m2 (>m1) points are
needed. We can use the gp set or H-set method to generate only an additional set of
m2 − m1 points. The H-set method has the heaviest computational burden, and it is
suitable only for small n.

Niederreiter and Peart [11] proposed the quasi-random search method for global
optimization problems. Here the NT method is used to generate the initial population
for population-based algorithms. First, we produce the NT-net points in Cn, and then
transform them to the hypercube D. In view of its powerful way of determining a set of
points that are uniformly scattered in an n-dimensional unit cube, the NT method can
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be regarded as an efficient method for producing the initial population in a popula-
tion-based algorithm. As a matter of fact, the NT method makes the algorithm explore
the search space uniformly, enhance the diversity of the population, and reduce the
chance of being trapped in local minima at the initial iteration.

3 A modified algorithm

In this section, we put forward a modification to the new version of the Price’s algo-
rithm [6] for solving the problem (P). As shown in [6], the original algorithm has
global and local search parts. The global search part consists of two heuristic tools: the
weighted centroid and the weighted reflection, and the quadratic model of the objec-
tive function is used in the local search part. The use of a weighted centroid and of a
weighted reflection is effective in reducing the number of function evaluations, while
the use of a quadratic model of the objective function is effective mainly in improv-
ing the accuracy of the estimated minimum objective function value. However, the
solution of simultaneous linear equations with 2n + 1 unknowns for building the qua-
dratic model of the objective function greatly increases the computational burden and
hence is time-consuming. In many cases the objective function has no improvement.
The three-point quadratic approximation is used in [3] to replace the simplex search
originally proposed by Price [7], and to conduct global searches. Here, the simplified
quadratic approximation with the three best points in the current population is used
to reduce the computational burden and to improve the local search ability as well as
the solution accuracy of the algorithm.

Our modification to the new version of the Price’s algorithm is twofold: (1) The NT
method is applied to generate the initial population. We first produce the uniformly
scattered points in an n-dimensional unit cube by using the NT method such as the
square root sequence in the gp set, and then transform them into the points in the
hypercube D, which are chosen as the initial population. (2) The simplified quadratic
approximation using the three best points in the current population is adopted, instead
of the quadratic model of the objective function in [6]. When a point found by the
global search part has the function value less than or equal to the third best within the
current population, the quadratic approximation using the three best points is used.

We now present the proposed algorithm for solving the problem (P) as follows.

Data. Choose a positive integer m such that m ≥ max(n + 1, 3), a suitable small
positive value ε, and a positive constant ω.

Step 0 Let k = 0, apply the NT method to generate the initial population set

Sk = {xk
1 , . . . , xk

m},
where xk

i ∈ D, i = 1, . . . , m, and compute f (xk
i ), i = 1, . . . , m.

Step 1 Determine two points xk
max and xk

min and their objective function values f k
max

and f k
min such that

f k
max = f (xk

max) = max
x∈Sk

f (x)

and

f k
min = f (xk

min) = min
x∈Sk

f (x).
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If the stopping criterion f k
max − f k

min < ε is satisfied, the algorithm terminates;
otherwise determine the third best point xk

min 3 in Sk and its objective function
value f k

min 3 = f (xk
min 3).

Step 2 Choose at random n + 1 points xk
i0 , xk

i1 , . . . , xk
in in Sk. Determine the weighted

centroid ck
w of the n points xk

i1 , . . . , xk
in :

ck
w =

n
∑

j=1

wk
j xk

ij ,

where

wk
j = ηk

j
∑n

j=1 η
k
j

with

ηk
j = 1

f (xk
ij)− f k

min + φk

and

φk = ω
(f k

max − f k
min)

2

f 0
max − f 0

min

.

Step 3 Determine the trial point x̃k by performing a weighted reflection: let

f k
w =

n
∑

j=1

wk
j f (xk

ij)

and

x̃k =






ck
w − αk(xk

i0 − ck
w), if f k

w ≤ f (xk
i0),

xk
i0 − αk(ck

w − xk
i0), if f k

w > f (xk
i0),

where

αk =







1 − f (xk
i0
)−f k

w

f k
max−f k

min+ψk , if f k
w ≤ f (xk

i0),

1 − f k
w−f (xk

i0
)

f k
max−f k

min+ψk , if f k
w > f (xk

i0)

with

ψk = ω
(f k

max − f k
min)

2

f 0
max − f 0

min

.

If x̃k �∈ D, go to step 2; otherwise compute f (x̃k).
Step 4 If f (x̃k) ≥ f k

max, let

Sk+1 = Sk

and k = k + 1, and go to step 2.



616 J Glob Optim (2006) 36:609–626

Step 5 If f k
min 3 < f (x̃k) < f k

max, let

Sk+1 = Sk ∪ {x̃k} − {xk
max}

and k = k + 1, and go to step 1.
Step 6 If f (x̃k) ≤ f k

min 3, let

S̃ = Sk ∪ {x̃k} − {xk
max}

and select three best points x̂l1 , x̂l2 and x̂l3 in S̃ corresponding to the smallest
objective function values of f . Let

x̂l1 = (x̂l11, x̂l12, . . . , x̂l1n)
�, x̂l2 = (x̂l21, x̂l22, . . . , x̂l2n)

�

and

x̂l3 = (x̂l31, x̂l32, . . . , x̂l3n)
�

and determine

f̂ k
max = f (x̂max) = max

x̂∈S̃
f (x̂).

Step 7 Compute the trial vector x̂k
q = (x̂k

q1, x̂k
q2, . . . , x̂k

qn)
� by

x̂k
qi = 1

2

[
(x̂2

l2i − x̂2
l3i)f (x̂l1)+ (x̂2

l3i − x̂2
l1i)f (x̂l2)+ (x̂2

l1i − x̂2
l2i)f (x̂l3)

(x̂l2i − x̂l3i)f (x̂l1)+ (x̂l3i − x̂l1i)f (x̂l2)+ (x̂l1i − x̂l2i)f (x̂l3)

]

,

i = 1, 2, . . . , n.

If x̂k
q �∈ D, let

Sk+1 = S̃
and k = k + 1, and go to step 1; otherwise compute f (x̂k

q). If f (x̂k
q) ≥ f̂ k

max, let

Sk+1 = S̃;

otherwise, let

Sk+1 = S̃ ∪ {x̂k
q} − {x̂max}.

Let k = k + 1 and go to step 1.

A disturbing fact concerning the proposed algorithm is its totally heuristic nature
with no theoretical convergence properties. Here, we give some remarks on the con-
vergence of the proposed algorithm. As shown in [6], the algorithm could be easily
modified in order to prove theoretically that the algorithm produces a sequence of
solutions globally convergent in probability towards a global minimum point. In this
case, we need to choose at random a vector in D and to compare the vector to the
worst point xk

max by using the greedy criterion, as discussed in [6].
Since the NT method is applied to generate the initial population, the value m is

smaller than 25n, which is used by the original algorithm [6]. We suggest to choose m
as follows: m = 12, when n = 1; m = 20n, when 2 ≤ n ≤ 7; and m = 19n, when n ≥ 8.
However, this is a heuristic choice for m. For relatively larger n, smaller m may be
chosen.
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4 Numerical results and comparisons

The proposed algorithm is experimented on a large set of benchmark problems given
in [6], on which the new version of the Price’s algorithm [6] has been tested. In all the
cases, D is a hypercube. All the test functions and the corresponding hypercubes are
described in the Appendix.

In the proposed algorithm, we choose ε = 10−6. In some cases, smaller ε will be
chosen in order to yield more accurate minimum function values. Based on extensive
simulation results, we suggest to choose ω = 1.1, which is smaller than ω = 103 cho-
sen in the original algorithm [6]. However, this is a heuristic choice for ω. Simulation
results show that this choice makes the proposed algorithm perform better.

Since the simplified quadratic approximation with the three best points is adopted in
the proposed algorithm instead of the quadratic model of the objective function used
in the original algorithm, the proposed algorithm avoids the solution of simultaneous
linear equations with 2n + 1 unknowns, which can reduce greatly the computational
overhead of the proposed algorithm. Although the CPU time taken by the proposed
algorithm may be much less than that by the original algorithm, we use the number of
function evaluations as our measure of efficiency, because it is machine-independent.

Although the NT method is a deterministic method for generating the initial popu-
lation, globally the proposed algorithm includes random selections in Step 2. For each
of the benchmark problems, 15 independent runs are performed, and the numerical
results obtained from the average of these 15 executions are presented in following
tables. In these tables, nt is the average total number of function evaluations; nf 1 is the
average number of function evaluation at the trial x̃k that have not given a value f (x̃k)

smaller than f k
max; nq is the average number of function evaluations totally computed

at the trial x̂k
q; nf 2 is the average number of function evaluations at the trial x̂k

q that
have not given a value f (x̂k

q) smaller than f̂ k
max; and fmin is the average value of f k

min
when the stop occurs.

As is shown in Sect. 3, the proposed algorithm has been derived from two mod-
ifications to the new version of the Price’s algorithm [6]: (1) Generating the initial
population of trial points by the NT method; (2) Using a simplified quadratic model of
the objective function based on the three best points in the current population instead
of the quadratic model of the objective function in [6]. Here, two sets of experi-
ments are carried out to illustrate the efficiency of these two modifications separately.
For convenience, Algorithm A stands for the new version of the Price’s algorithm
given in [6], Algorithm B stands for the Algorithm A where the quadratic model
of the objective function in [6] is replaced by the simplified quadratic model, and
Algorithm C stands for our modification to Algorithm A.

In order to illustrate the efficiency of the simplified quadratic model, we execute
Algorithm B (case 1), in which m = 25n is chosen and the Monte Carlo method is
used to generate its initial population, for every benchmark problem, and compare
the results with those obtained by Algorithm A. The comparison results are shown
in Table 1. The results of Algorithm A presented in the table are cited from [6].
From Table 1, one can see that Algorithm B (case 1) requires a smaller number of
function evaluations and it performs favorably. In particular, in 13 cases Algorithm
B (case 1) yields a smaller minimum objective function value, and in six cases fmin

found by Algorithm B (case 1) is equal to that obtained by Algorithm A. For
Problem 15, we obtain more accurate minimum function values, as shown in [12].
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Table 1 Comparison results for illustrating the efficiency of the simplified quadratic model

Problems Algorithm A Algorithm B (case 1)

n nt nf 1 fmin nt nf 1 nq nf 2 fmin

1 2 3837 1428 6.5 × 10−9 3004 683 330 70 2.6 × 10−9

2 3 1648 634 1.9 × 10−3 1321 379 39 10 1.9 × 10−3

3 3 3150 1632 2.2 × 10−8 1662 297 45 2 3.0 × 10−9

4 4 3500 2318 4.7 × 10−10 1903 762 31 10 2.3 × 10−10

5 4 5089 2417 3.2 × 10−8 3109 587 155 23 1.8 × 10−8

6 2 722 229 −1.0 592 124 20 7 −1.031628
7 2 903 261 5.8 × 10−12 876 157 20 0 1.2 × 10−10

” 4 2374 688 7.7 × 10−11 2266 444 44 1 3.9 × 10−9

” 6 3921 1092 3.8 × 10−10 3850 744 60 2 6.3 × 10−9

” 8 5427 1440 4.2 × 10−10 5368 1007 84 2 1.9 × 10−8

” 10 7081 1815 1.8 × 10−10 6926 1246 94 4 4.8 × 10−8

8 2 800 263 2.2 × 10−9 716 129 20 0 8.9 × 10−10

” 4 2195 642 2.2 × 10−9 2143 414 39 1 1.7 × 10−9

” 6 3790 1082 2.2 × 10−10 3746 747 58 1 2.3 × 10−9

” 8 5191 1331 1.7 × 10−9 5105 1000 72 1 1.8 × 10−8

” 10 7037 1826 9.7 × 10−11 6931 1250 94 3 1.8 × 10−8

9(l = 5) 4 5403 2841 −10.05 5349 3226 43 18 −10.1532
9(l = 7) 4 5386 2837 −10.06 5045 2646 40 16 −10.40294
9(l = 10) 4 5862 3235 −10.07 4959 2571 38 14 −10.53641
10 3 1014 250 −3.86 968 157 19 7 −3.862782
” 6 4154 1432 −3.32 3945 1114 39 14 −3.322368
11 2 936 279 3.00 712 127 22 9 3.00
12 2 586 162 −1.00 412 59 11 0 −1.00
” 4 1655 754 −1.00 1428 271 25 0 −1.00
13 2 723 225 −0.20 537 106 15 0 −0.20
” 4 2327 826 −0.40 1952 484 32 0 −0.40
14 2 710 164 −95.28 645 114 13 4 −95.28289
15(l = 4) 1 236 89 15.28 205 45 5 1 15.28187
15(l = 10) 1 203 61 44.95 195 32 4 1 44.95739
15(l = 25) 1 332 113 261.78 295 74 14 4 261.7863

However, in eight cases fmin found by Algorithm B (case 1) is a little bit larger
than that obtained by Algorithm A. Therefore, Algorithm B (case 1) requires a
smaller number of function evaluations and yields relatively accurate solutions. These
results indicate that in many cases the simplified quadratic model is favorable for
achieving better accuracy of the estimated minimum value fmin. It is clear that the
computational burden of the simplified quadratic model is much less than that of the
quadratic model of the objective function in [6].

In order to illustrate the efficiency of the NT method, we execute Algorithm B
(case 2), in which m = 12, when n = 1; m = 20n, when 2 ≤ n ≤ 7; m = 19n, when
n ≥ 8, and the Monte Carlo method is used to generate its initial population, for every
benchmark problem, and compare the results with those obtained by Algorithm C,
in which the identical m is chosen, and the square root sequence in the gp set given in
Sect. 2 is used to generate its initial population. As an exception, in Algorithm B
(case 2), we choose m = 17 for Problem 15 with l = 25, in order to make the algorithm
converge to the optimal solution in 15 independent runs. The comparison results are
shown in Table 2. From Table 2, one can see that Algorithm C requires a smaller
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Table 2 Comparison results for illustrating the efficiency of the number-theoretic method

Problems Algorithm B (case 2) Algorithm C

n nt nf 1 nq nf 2 fmin nt nf 1 nq nf 2 fmin

1 2 2928 429 495 139 4.0 × 10−8 2744 444 418 121 9.3 × 10−10

2 3 1252 268 64 29 1.9 × 10−3 984 221 39 9 1.9 × 10−3

3 3 1443 246 73 7 5.2 × 10−9 1327 231 56 5 2.1 × 10−9

4 4 1627 673 37 11 1.1 × 10−10 1326 376 31 6 1.9 × 10−11

5 4 2787 415 213 30 2.7 × 10−8 2478 389 173 23 2.2 × 10−8

6 2 498 118 21 9 −1.031628 451 94 17 5 −1.031628
7 2 858 159 22 0 1.9 × 10−12 802 140 18 0 1.5 × 10−12

” 4 2264 424 44 1 1.3 × 10−11 2096 365 44 1 2.6 × 10−11

” 6 3708 660 69 5 7.7 × 10−11 3541 863 59 3 2.7 × 10−10

” 8 5108 852 88 3 1.1 × 10−10 4875 1320 77 6 3.7 × 10−10

” 10 6884 1070 108 5 2.4 × 10−10 6593 1800 88 6 1.6 × 10−10

8 2 591 108 18 0 1.6 × 10−9 533 83 18 0 1.1 × 10−9

” 4 1800 356 43 1 1.2 × 10−9 1708 330 41 0 1.2 × 10−9

” 6 3642 701 65 3 4.0 × 10−11 3524 852 55 2 6.9 × 10−11

” 8 4520 781 92 4 9.5 × 10−10 4349 1142 73 4 8.0 × 10−10

” 10 6729 1093 109 5 1.2 × 10−9 6571 1791 86 6 4.9 × 10−11

9(l = 5) 4 4921 2924 44 19 −10.1532 4348 2504 42 16 −10.1532
9(l = 7) 4 4014 2108 43 16 −10.40294 3724 1825 43 16 −10.40294
9(l = 10) 4 3929 2036 42 15 −10.53641 3768 1878 42 16 −10.53641
10 3 824 139 19 6 −3.862782 755 109 17 6 −3.862782
” 6 3132 847 36 13 −3.322368 2953 1161 34 13 −3.322368
11 2 611 108 23 9 3.00 534 85 21 7 3.00
12 2 348 50 12 0 −1.00 309 41 13 0 −1.00
” 4 1160 204 25 0 −1.00 970 166 25 0 −1.00
13 2 491 102 16 0 −0.20 412 78 15 0 −0.20
” 4 1520 361 35 0 −0.40 1290 295 33 0 −0.40
14 2 601 146 12 4 −95.28289 545 115 12 5 −95.28289
15(l = 4) 1 112 24 7 2 15.28187 86 14 6 2 15.28187
15(l = 10) 1 109 21 6 1 44.95739 82 11 5 1 44.95739
15(l = 25) 1 235 54 16 6 261.7863 118 16 12 4 261.7863

number of function evaluations, and it performs better than Algorithm B (case 2).
In particular, in nine cases Algorithm C yields a smaller minimum objective func-
tion value, and in 17 cases fmin found by Algorithm C is equal to that obtained by
Algorithm B (case 2). However, in four cases fmin found by Algorithm C is a little
bit larger than that obtained by Algorithm B (case 2). These results indicate that
in most cases the NT method is effective in reducing the number of function evalua-
tions and in improving the accuracy of the minimum objective function value, when
the number of points in the initial population set is relatively small. In fact, the NT
method is a powerful way for generating the initial population of a population-based
algorithm.

For all the benchmark problems presented in the Appendix, a comparison between
Algorithm A in Table 1 and Algorithm C in Table 2 has been made. From Tables
1 and 2, one can see that Algorithm C performs better on all the benchmark prob-
lems. In particular, both nt and nf 1 are smaller; in 21 cases fmin is smaller and in
other cases fmin is equal to the minimum function value obtained by Algorithm A,
except for problem 15, we obtain more accurate minimum function values. Therefore,
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Table 3 Results of Algorithm C with smaller m

Problems n m nt nf 1 nq nf 2 fmin

1 2 36 2326 390 373 99 1.5 × 10−9

2 3 54 814 180 32 8 1.9 × 10−3

3 3 45 911 147 48 4 3.8 × 10−9

4 4 60 979 242 37 6 4.0 × 10−11

5 4 76 2420 358 200 24 6.4 × 10−8

6 2 20 222 42 19 7 −1.031628
7 2 26 512 82 26 1 1.7 × 10−12

” 4 56 1533 262 54 2 1.2 × 10−11

” 6 96 2798 465 65 2 7.6 × 10−11

” 8 120 4217 980 75 4 1.2 × 10−10

” 10 150 5715 1499 89 7 1.7 × 10−10

8 2 28 424 72 22 0 1.4 × 10−10

” 4 56 1193 197 44 1 5.2 × 10−10

” 6 96 2788 494 62 3 9.2 × 10−11

” 8 112 3265 676 73 3 8.0 × 10−10

” 10 140 5172 1253 87 7 5.8 × 10−11

9(l = 5) 4 56 2771 1533 42 17 −10.1532
9(l = 7) 4 56 2438 1155 42 15 −10.40294
9(l = 10) 4 56 2447 1160 45 17 −10.53641
10 3 36 453 60 21 6 −3.862782
” 6 84 2075 502 39 15 −3.322368
11 2 24 319 49 24 9 3.00
12 2 24 169 17 13 0 −1.00
” 4 48 628 84 29 0 −1.00
13 2 24 262 44 16 0 −0.20
” 4 56 975 191 37 0 −0.40
14 2 24 314 60 10 3 −95.28289

Algorithm C requires a much smaller number of function evaluations and yields a
smaller or more accurate minimum objective function value in many cases.

From the analysis of the behavior ofAlgorithm C, we remark that the NT method
makes the algorithm explore uniformly the region of interest at the initial iteration,
and that the applications of the simplified quadratic model and the NT method is effec-
tive in reducing the number of function evaluations and in improving the accuracy of
the estimated minimum objective function value.

Thanks to the advantage of the NT method for producing the uniformly scattered
initial population over the search space, we may choose smaller m in Algorithm C
and solve many benchmark problems. Table 3 shows the results of Algorithm C
with smaller m for 14 benchmarks. Compared with the corresponding results given
in Table 2, one can see that for all the cases Algorithm C with smaller m needs a
smaller number of function evaluations. Although in eight cases fmin given in Table 3
is a little bit larger than that in Table 2, Algorithm C still yields relatively accurate
solutions.

Since the three-point quadratic approximation inAlgorithm C can reduce greatly
its computational overhead, the proposed algorithm can be used to solve medium size
problems. We have tested Algorithm C on 5 benchmark problems of medium size.
For relative simple problems, e.g. problems 12 and 13, we choose smaller m. However,
for relatively difficult problems, e.g. problems 1 and 8, in order to make the algorithm
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Table 4 Results of Algorithm C for 5 benchmark problems with medium sizes

Problems n m nt nf 1 nq nf 2 fmin

1 10 250 24715 2076 1400 418 1.2 × 10−6

” 15 840 97386 9165 2299 1091 1.1 × 10−5

7 20 280 11467 1179 325 50 2.1 × 10−5

” 30 420 17634 1941 484 109 1.6 × 10−4

” 40 760 33250 4129 455 108 2.3 × 10−4

” 50 950 49089 5353 579 170 6.8 × 10−4

8 20 380 14827 1874 272 35 7.1 × 10−6

” 30 600 24279 3144 424 95 5.2 × 10−5

” 40 1200 50578 7375 370 73 8.6 × 10−5

” 50 1500 74873 9586 502 161 4.6 × 10−4

12 20 120 5681 1684 158 10 −1.00
” 30 240 23570 11495 129 10 −1.00
” 40 240 38330 19867 208 28 −1.00
” 50 250 47652 22457 260 47 −1.00
13 20 160 6696 992 240 13 −2.00
” 30 240 12374 2018 335 25 −3.00
” 40 320 19479 3416 459 37 −4.00
” 50 400 24811 3849 538 46 −5.00

converge to the optimal solution in 15 independent runs, larger m may be chosen. The
results of Algorithm C for the medium size problems are shown in Table 4. From
the table, one can see that Algorithm C performs favorably for the medium size
problems.

Apparently, the values of nq and nf 2 given in Tables 1–5 indicate that the three-
point quadratic approximation is an important operator. In most cases, the operator is
successful for improving the estimated minimum objective function value and makes
the algorithm converge faster.

5 Conclusions

We have presented a modification to the new version of the Price’s algorithm given
in [6] for the unconstrained optimization problem (P). Its dominant factor is that
the application of the NT method for generating the initial population, the weighted
centroid, the weighted reflection, and the simplified quadratic approximation with the
three best points. The three-point quadratic approximation in the algorithm avoids
the solution of simultaneous linear equations, which can reduce greatly the compu-
tational overhead of the algorithm. The simplified quadratic model can also improve
the accuracy of the minimum function value and enhance the local search ability of
the algorithm. The close integration of the global search part of the algorithm with the
simplified quadratic approximation makes the proposed algorithm converge fast and
adapt itself to the problem being solved. Two sets of experiments have been carried
out to illustrate the efficiency of the simplified quadratic model and the number-the-
oretic method separately. The comparison results with the original algorithm show
that the proposed algorithm requires a smaller number of function evaluations and, in
many cases, yields a smaller or more accurate minimum function value. Thanks to the
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advantage of the three-point quadratic approximation, the proposed algorithm can
also be used to deal with medium size problems. The performance of the proposed
algorithm is efficient.

For the first time, the NT method has been applied to generate the initial popu-
lation of a population-based algorithm. Owing to its powerful way of determining a
set of uniformly scattered vectors in an n-dimensional unit cube, the NT method can
be regarded as a general efficient method for producing the initial population of a
population-based algorithm. As a result, the algorithm could explore the search space
uniformly, enhance the diversity of the population, and reduce the chance of being
trapped in local minima at the initial iteration. With the NT method, the initial popu-
lation of the algorithm is generated by a deterministic way, which is different from the
Monte Carlo method in the usual statistical sense. We believe that the deterministic
method for producing the uniformly scattered initial population in the search space
will be well accepted by the users for engineering applications.

The choice of the initial population by the NT method may reduce the value of m
and improve the efficiency of the algorithm. How to select a suitable value of m and
to make the algorithm converge faster remains to be studied further.

A Appendix: Benchmark problems [6]

1. Extended Rosenbrock

f (x) =
n−1
∑

i=1

[

(xi − 1)2 + 100(x2
i − xi+1)

2
]

,

x∗ = (1, 1, . . . , 1)�, f (x∗) = 0.

The region of interest is −1000 ≤ xi ≤ 1000, i = 1, 2, . . . , n.
2. Meyer and Roth

f (x1, x2, x3) =
l

∑

i=1

[

Yi(t, v, x)− yi

]2
,

in which

Yi(t, v, x) = x1x3ti
1 + x1ti + x2vi

and ti, vi and yi are given the following table.

i ti vi yi

1 1.0 1.0 0.126
2 2.0 1.0 0.219
3 1.0 2.0 0.076
4 2.0 2.0 0.126
5 0.1 0.0 0.186

For this problem l = 5 and n = 3,

x∗ = (3.13, 15.16, 0.78)�, f (x∗) = 4.36 × 10−5.
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The region of interest is −10 ≤ xi ≤ 10, i = 1, 2, 3. In this region,

x∗ = (3.52, 10.0, 0.571)�, f (x∗) = 1.9 × 10−3.

3. Flether and Powell

f (x1, x2, x3) = 100
[

(x3 − 10θ)2 + (r − 1)2
] + x2

3,

where

r =
(

x2
1 + x2

2

)1/2

and

θ =






1
2π tan−1 x2

x1
, (x1 > 0),

1
2π tan−1 x2

x1
+ 1

2 , (x1 < 0).

x∗ = (1, 0, 0)�, f (x∗) = 0.

The region of interest is −10 ≤ xi ≤ 10, i = 1, 2, 3.
4. Miele and Cantrell

f (x1, x2, x3, x4) = [

exp(x1)− x2
]4 + 100(x2 − x3)

6 + [

tan(x3 − x4)
]4 + x8

1,

x∗ = (0, 1, 1, 1)�, or (0, 1, 1, 1 + jπ)�, j = −3, −2, −1, 1, 2, f (x∗) = 0.

The region of interest is −10 ≤ xi ≤ 10, i = 1, 2, 3, 4.
5. Wood’s function quoted by Colville

f (x1, x2, x3, x4) = 100(x2
1 − x2)

2 + (x1 − 1)2 + (x3 − 1)2 + 90(x2
3 − x4)

2

+ 10.1
[

(x2 − 1)2 + (x4 − 1)2
] + 19.8(x2 − 1)(x4 − 1),

x∗ = (1, 1, 1, 1)�, f (x∗) = 0.

The region of interest is −10 ≤ xi ≤ 10, i = 1, 2, 3, 4.
6. Six-hump camel back function

f (x1, x2) = (

4 − 2.1x2
1 + x4

1/3
)

x2
1 + x1x2 + ( − 4 + 4x2

2
)

x2
2.

The region of interest is −2.5 ≤ x1 ≤ 2.5, −1.5 ≤ x2 ≤ 1.5. The approximate
optimal value f ∗ = −1.031628. This function exhibits six local minimizers, two of
which are also global.

7. 10n local minima

f (x) = (π/n)
{

10 sin2(πx1)+
n−1
∑

i=1

[

(xi − 1)2(1 + 10 sin2(πxi+1))
]

+ (xn − 1)2
}

,

f (x∗) = 0.

The region of interest is −10 ≤ xi ≤ 10, i = 1, 2, . . . , n. This function has
roughly 10n local minimizers and a unique global minimizer located at x∗

i = 1,
i = 1, 2, . . . , n.
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8. 15n local minima

f (x) = (1/10)
{

sin2(3πx1)+
n−1
∑

i=1

[

(xi − 1)2(1 + 10 sin2(3πxi+1))
]}

+(1/10)(xn − 1)2
[

1 + sin2(2πxn)
]

,

f (x∗) = 0.

The region of interest is −10 ≤ xi ≤ 10, i = 1, 2, . . . , n. This function has
roughly 15n local minimizers and a unique global minimizer located at x∗

i = 1,
i = 1, 2, . . . , n.

9. Shekel’s family

f (x) = −
l

∑

i=1

1
(x − ai)�(x − ai)+ ci

.

We studied this function with l = 5, l = 7, l = 10 and n = 4. The values of
ai = (ai1, . . . , ain)

� and ci > 0 (i = 1, . . . , l) are given in the following table.

i ai1 ai2 ai3 ai4 ci

1 4.0 4.0 4.0 4.0 0.1
2 1.0 1.0 1.0 1.0 0.2
3 8.0 8.0 8.0 8.0 0.2
4 6.0 6.0 6.0 6.0 0.4
5 3.0 7.0 3.0 7.0 0.4
6 2.0 9.0 2.0 9.0 0.6
7 5.0 5.0 3.0 3.0 0.3
8 8.0 1.0 8.0 1.0 0.7
9 6.0 2.0 6.0 2.0 0.5

10 7.0 3.6 7.0 3.6 0.5

The region of interest is 0 ≤ xi ≤ 10, i = 1, 2, . . . , n. This function has l local
minima in positions ai with levels ci.

10. Hartman’s family

f (x) = −
l

∑

i=1

ciexp
[

−
n

∑

j=1

aij(xj − pij)
2
]

.

We studied this function with l = 4, n = 3 and n = 6. The corresponding values
of ai = (ai1, . . . , ain)

�, pi = (pi1, . . . , pin)
� and ci > 0 (i = 1, . . . , l) are given in

following tables.

i ai1 ai2 ai3 ci pi1 pi2 pi3
1 3.0 10.0 30.0 1.0 0.3689 0.1170 0.2673
2 0.1 10.0 35.0 1.2 0.4699 0.4387 0.7470
3 3.0 10.0 30.0 3.0 0.1091 0.8732 0.5547
4 0.1 10.0 35.0 3.2 0.03815 0.5743 0.8828
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i ai1 ai2 ai3 ai4 ai5 ai6 ci

1 10.0 3.0 17.0 3.5 1.7 8.0 1.0
2 0.05 10.0 17.0 0.1 8.0 14.0 1.2
3 3.0 3.5 1.7 10.0 17.0 8.0 3.0
4 17.0 8.0 0.05 10.0 0.1 14.0 3.2

i pi1 pi2 pi3 pi4 pi5 pi6
1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

The region of interest is 0 ≤ xi ≤ 1, i = 1, 2, . . . , n. This function has l local minima
in positions pi with levels ci.

11. Goldstein and Price

f (x) = [

1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)
]

[

30 + (2x1 − 3x2)
2(18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)

]

,

x∗ = (0, −1)�, f (x∗) = 3.

The region of interest is −2 ≤ xi ≤ 2, i = 1, 2.
12. Exponential

f (x) = −exp
(

− 0.5
n

∑

i=1

x2
i

)

,

f (x∗) = −1.

The region of interest is −1 ≤ xi ≤ 1, i = 1, 2, . . . , n.
13. Cosine mixture

f (x) = −0.1
n

∑

i=1

cos(5πxi)+
n

∑

i=1

x2
i ,

f (x∗) = −0.1n.

The region of interest is −1 ≤ xi ≤ 1, i = 1, 2, . . . , n.
14. Poissonian pulse-train likelihood

f (x) =
p

∑

i=1

{

λi(x)− n̂i log[λi(x)]
}

,

where

λi(x) = 2
{

1 + 2.5 exp
[ − 0.5

(
i − x1

x2

)2
]} + 3

and p = 21. The values of n̂i, i = 1, . . . , 21 are: 5, 2, 4, 2, 7, 2, 4, 5, 4, 4, 15, 10,
8, 15, 5, 6, 3, 4, 5, 2, 6. The approximate optimal value f (x∗) = −95.28289. The
region of interest is 1 ≤ x1 ≤ 21, 1 ≤ x2 ≤ 8.
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15. Cauchy likelihood

f (x) =
l

∑

i=1

{

log(π)+ log[1 + (yi − x)2]
}

.

We studied this function with l = 4, l = 10, and l = 25. The values of yi are given
in the following table:

l = 4 3 7 12 17
l = 10 2 5 7 8 11 15 17 21 23 26
l = 25 4.1 7.7 17.5 31.4 32.7 92.4 115.3 118.3 119.0 129.6

198.6 200.7 242.5 255.0 274.7 274.7 303.8 334.1 430.0 489.1
703.4 978.0 1656.0 1697.8 2745.6

The region of interest is y1 ≤ x ≤ yl.
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